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Abstract
Background Thermal control is pivotal for preventing ureter thermal injury during laser lithotripsy; however, patient-
based studies have rarely addressed this topic. In recent years, we have employed a ureter catheter for irrigation 
drainage and measured temperature changes during lithotripsy. The aim of this study was to evaluate the thermal 
control effect of this strategy in ureteroscopic holmium laser lithotripsy.

Methods From September 2022 to June 2024, patients who underwent ureteroscopic holmium laser lithotripsy 
at our centre were included in this retrospective cohort study. Patients were divided into a drainage group and a 
conventional group depending on whether a ureter catheter was used for concomitant drainage during lithotripsy. 
The temperature was measured using a K-type thermocouple thermometer. Lithotripsy was performed at an 
irrigation pressure setting of 30 mmHg and a laser setting of 1.0 J × 20 Hz. Intraoperative and follow-up data were 
compared between the groups.

Results Sixty-seven patients were included, including 32 in the drainage group and 35 in the conventional 
group. lgCEM43 and the peak temperature of irrigation were significantly lower in the drainage group. The longest 
continuous lasing time was longer and the operation time was shorter than those in the drainage group. Compared 
with that in the conventional group, the quality of endoscopic vision in the drainage group during lithotripsy was 
significantly improved. There was no significant difference in the post-ureteroscopic lesion scale score or the 1-month 
stone-free rate between the groups. At the 6-month follow-up, no postoperative ureter stricture was observed in 
either group.

Conclusions The current thermal control strategy is safe and feasible; it significantly reduces the intraoperative 
irrigation temperature and improves endoscopic vision in ureteroscopic laser lithotripsy.
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Background
The holmium: yttrium-aluminum-garnet (Ho: YAG) laser 
is highly efficient for treating almost all stone composi-
tions and is an ideal intracorporeal lithotripter for ureter 
stones [1]. Unlike pneumatic lithotripsy, which involves 
fragmenting stones directly via mechanical force, the Ho: 
YAG laser can fragment stones primarily via photother-
mal effects [2]. Therefore, the thermal effects of the Ho: 
YAG laser should not be underestimated, especially when 
high-power platforms are widely accessible.

The heat generated by lasers possibly leads to protein 
denaturation, gene damage and, ultimately, urothelial 
cell death [3]. A recent meta-analysis revealed a higher 
ureter stricture rate in the laser lithotripsy group than in 
the pneumatic lithotripsy group [4]. Although the cause 
of ureter stricture varies, thermal injury remains a non-
negligible risk factor. A clinical study [5] evaluating the 
thermal effects of holmium laser lithotripsy under ure-
teroscopy revealed that the temperature of irrigation 
in all cases was greater than 43 °C, with 66.3% of irriga-
tion temperatures exceeding 56  °C. Furthermore, three 
cases with an irrigation temperature > 56  °C progressed 
to hydronephrosis, indicating that irrigation overheating 
might contribute to ureter stricture.

Our previous clinical study addressed the importance 
of sufficient irrigation for preventing thermal injuries [6]. 
Nevertheless, it is difficult to maintain constant irrigation 
in semi-rigid ureteroscopy because of the lack of effective 
reflux. Therefore, we used a ureter catheter for intraop-
erative concomitant drainage. The aim of this study was 
to evaluate the thermal control effect of this strategy in 
ureteroscopic holmium laser lithotripsy.

Methods
Study design
This was a nonsynchronous controlled retrospective 
cohort study. Patients who underwent ureteroscopic Ho: 
YAG laser lithotripsy at our centre from September 2022 
to June 2024 were retrospectively reviewed. They were 
divided into a drainage group and a conventional group 
according to whether a ureter catheter was used for irri-
gation drainage. The conventional group was patients 
treated prior to inclusion of the drainage strategy; and 
when high irrigation temperatures were noted during 
routine surgeries, our surgical team decided to switch to 
drainage strategy. The inclusion criteria were as follows: 
(1) patients were diagnosed with ureter stones, (2) sur-
geries were performed by the same endourology team, 
and (3) surgical videos and irrigation temperatures were 
recorded. Patients with congenital kidney/ureter malfor-
mations or ureter strictures were excluded.

Demographic data, as well as the stone side, location, 
maximum diameter, pre-stenting, stone-free rate (SFR) 
and postoperative ureter stricture, were obtained from 

medical records. Intraoperative data such as the opera-
tion time, maximum continuous lasing time (tmax), 
quality of endoscopic vision (QoEV) and the Post-Ure-
teroscopic Lesion Scale (PULS) scores [7] were retrieved 
by reviewing of surgery video files. QoEV and PULS 
scores were evaluated by two independent urologists. 
The peak temperature of irrigation (Tpeak) and cumula-
tive equivalent minutes at 43 °C (CEM43) were calculated 
on the basis of the temperature profiles recorded by the 
thermometer.

Sample calculation
According to the aim of this study, lgCEM43 was consid-
ered the primary outcome measure. A continuous bilat-
eral test was used; the α level was 0.05, and the test power 
(1 − β) was 0.9. On the basis of our previous results, the 
mean lgCEM43 values were − 2.03 ± 3.67 and 1.25 ± 3.21 in 
the drainage and conventional groups, respectively. PASS 
15 software (NCSS, Kaysville, Utah, USA) was used to 
calculate the required sample size. The required sample 
size was determined to be 28 cases. After accounting for 
a potential dropout rate of 10%, the minimum sample 
size was 31 cases in each group.

Surgical procedures
After general anaesthesia, the patient was placed in the 
lithotomy position. Ureteroscopy was performed using 
an 8/9.8  F semi-rigid ureteroscope (Wolf, Knittlingen, 
Germany) prior to lithotripsy.

Concomitant catheter drainage group (Drainage group)
After ureteroscopy, a 5 F ureter catheter (Cook, Bloom-
ington, IN, USA) was inserted into the ureter over the 
stone through a nitinol core wire guide (Cook, Bloom-
ington, IN, USA). The ureteroscope was reinserted into 
the ureter alongside the catheter (Fig. 1). The position of 
the catheter was adjusted (usually pulled back to avoid 
folding in the renal pelvis) to obtain constant irrigation 
outflow. Then, a laser fibre with a K-type thermocouple 
was inserted, and lithotripsy began. After lithotripsy, the 
stone fragments were removed using a basket (Cook, 
Bloomington, IN, USA), and a double-J stent (Cook, 
Bloomington, IN, USA) was placed.

Conventional lithotripsy group (Conventional group)
No ureter catheter was placed, and the other surgical 
procedures were the same as those in the ureter catheter 
drainage group.

Irrigation and laser settings
Saline irrigation was maintained at room temperature 
(24  °C) and delivered to the ureteroscope by a YDJ-111 
peristaltic pump (Yida, Hangzhou, Zhejiang, China) at a 
pressure setting of 30 mmHg. Lithotripsy was performed 
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via a Lumenis PULSE 120 H system (Lumenis, Yokneam, 
Israel) in short pulse mode at 1.0 J × 20 Hz.

Temperature measurements
The irrigation temperatures were measured with an 
OMEGA® RDXL4SD thermometer (Engineering Inc., 
Taiwan) with a KPS-QB-K-1000-SMPW K-type ther-
mocouple (Suma, Taizhou, Zhejiang, China) fixed to a 
200-µm laser fibre (Lumenis, Yokneam, Israel) using a 

surgical film (Renhe, Hanzhou, Zhejiang, China) (Fig. 2). 
Temperature changes were automatically recorded by a 
thermometer every second from the time of activation of 
the laser until the end of lithotripsy.

Postoperative follow-up
The double-J stent was removed at 2–4 weeks after the 
operation. Abdominal‒pelvic computed tomography 
(CT) was performed 1 month and 6 months after the 
operation to evaluate stone clearance and ureter stricture.

Definitions
Stone-free status was defined as no detectable stones 
or stone fragments ≤ 3  mm on CT. The operation time 
referred to the duration of lithotripsy from the beginning 
of the first pedal activation to the end of the last pedal 
activation. tmax was defined as the longest lasing time for 
one pedal activation. The QoEV reflects the clarity of the 
surgical field during laser activation. It was scored using 
a self-developed 5-point rating scale, where a higher 
score represented better clarity (Fig. 3). CEM43 was used 
to evaluate the thermal dose and was calculated using 
the following formula: CEM43 = ΣΔt·R(43−T) (R = 0.5 for 
T > 43 °C, R = 0.25 for T < 43 °C) [8].

Statistical analysis
Normality and homoscedasticity were verified by the 
Shapiro‒Wilk test and Levene’s test, respectively. Contin-
uous variables with a normal distribution are presented 
as the mean ± standard deviation (SD) or mean ± standard 
error (SE); continuous variables with a nonnormal distri-
bution are presented as the median (interquartile range, 
IQR). Student’s t test was used for continuous variables 
with a normal distribution and homoscedasticity, the 
Welch test was used for continuous variables with a nor-
mal distribution but heteroscedasticity, and the Mann‒
Whitney U test was used for continuous variables with a 
nonnormal distribution. Categorical variables were com-
pared using Fisher’s exact test. All the statistical analy-
ses were performed using IBM SPSS Statistics version 
20 (IBM SPSS Inc.). P < 0.05 was considered statistically 
significant.

Results
Sixty-seven patients were included into our retrospec-
tive study, including 32 in the drainage group and 35 
in the conventional group. In the drainage group, 5 
patients were pre-stented. Three of these patients were 
pre-stented due to ureteral tract infection, while 2 were 
pre-stented due to failure of ureteroscopy at the first 
attempt. In the conventional group, 3 patients were pre-
stented due to failed ureteroscopy at the first attempt, 
and 2 patients were converted from the planned drain-
age group. No significant difference was found in terms 

Fig. 1 Schematic diagram of concomitant ureteral drainage during litho-
tripsy Laser lithotripsy was performed with a 5 F catheter alongside the 
ureteroscope. The tip of the catheter was placed over the stone to obtain 
constant irrigation outflow and avoid fragment obstruction
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of demographic or clinical features between the groups 
(Table 1).

Intergroup comparisons revealed considerable advan-
tages in favour of the drainage group (Table 1; Fig. 4). The 
CEM43 was significantly shorter in the drainage group 
(0.00044 (0.22 min) vs. 76.49 (3646.25), P < 0.001). Since 
the CEM43 data were nonnormally distributed, consider-
ing the calculation method of CEM43, we took the loga-
rithm of CEM43 and reperformed the comparison. The 
results revealed that lgCEM43 was significantly lower in 
the drainage group (-3.20 ± 2.72 vs. 2.02 ± 2.95, P < 0.001). 
In the drainage group, the mean peak temperature of 
irrigation was 39.95 °C, which was much lower than that 
in the conventional group (39.34 ± 5.88 vs. 54.28 ± 9.11, 
P < 0.001). Additionally, 34.28% (12/35) of the patients 
in the conventional group exceeded the Tpeak of 56  °C, 
whereas none of the patients in the drainage group 
exceeded the Tpeak.

The clarity of the surgical field evaluated by the QoEV 
was much better in the drainage group (3.50 (0.88) vs. 
1.50 (0.50), P < 0.001). Consequently, the longest con-
tinuous lasing time (11.50 (4.00) vs. 3.00 (2.00), P < 0.001) 
was longer, and the operation time (7.15 ± 3.47 vs. 
14.93 ± 7.66, P < 0.01) was shorter than that of the drain-
age group. No significant difference in PULS was noted 
between the groups.

At the 1-month follow-up, the SFRs were similar 
between the groups. At the 6-month follow-up, no 
patients in either group developed ureter stricture.

Discussion
Concerns about the thermal effects of laser lithotripsy 
are increasing. In 2015, Molina WR carried out the first 
laser lithotripsy thermography study [9]. In their study, 
laser lithotripsy was performed on an intact urinary tract 
with a power setting of 10 W, and the data revealed that 

Fig. 3 Ureteroscopic view of different QoEV scores A Ureteroscopic view with a score of 5. Clear endoscopic vision with a tiny amount of stone dust, 
which has no influence on lithotripsy. B Ureteroscopic view with a score of 4. Relatively clear endoscopic vision with a small amount of stone dust has 
almost no influence on lithotripsy. C Ureteroscopic view with a score of 3. Endoscopic vision between a score of 2 and 3, with recognizable adjacent struc-
tures, has a slight influence on lithotripsy. D Ureteroscopic image with a score of 2. Blurred endoscopic vision with a moderate amount of stone dust but 
becomes clear quickly; lithotripsy is interrupted for a short period of time. E Ureteroscopic view with a score of 1. When there is blurred endoscopic vision 
with a large amount of stone dust, manual drainage is needed, and lithotripsy is interrupted for a long period of time QoEV, quality of endoscopic view

 

Fig. 2 Temperature measurement during lithotripsy The K-type thermocouple was fixed to a 200-µm laser fibre using a surgical film. The temperature 
was measured every second by a thermometer
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the external ureteral wall reached temperatures of 37.4 °C 
and 49.5  °C with and without irrigation, respectively. 
Subsequent studies evaluating the temperature profiles of 
irrigation during ureteroscopic Ho: YAG laser lithotripsy 
using different models demonstrated that sufficient irri-
gation is beneficial for intraoperative temperature control 
[10–16].

Theoretically, temperature changes can be calculated 
through the formula Q = cm∆ T  (Q, energy absorbed by 
irrigation; c, specific heat capacity of irrigation; m, mass 
of the irrigation, ΔT, temperature change). Under ideal 
conditions, regardless of thermal diffusion, the formula 
can be transformed to ∆ T = Q

c· m = W · t
c· ρ · v· t = W

c· ρ · v  
(W, laser power; ρ, density of irrigation; v, irrigation flow; 
t, laser activation duration). As c and ρ are constants, the 

temperature change is directly proportional to the laser 
power and inversely proportional to the irrigation flow.

Increasing irrigation flow seems reasonable for avoid-
ing thermal injury. However, in clinical practice, although 
the setting value of the peristaltic pump has increased, 
the actual flow cannot be greatly improved because of 
the narrow space of the ureter. Additionally, the intra-
renal pressure (IRP) should be taken into consideration 
to reduce pyelovenous backflow and complications [17]. 
Therefore, we developed a strategy to increase irrigation 
by maintaining constant drainage. We also attempted to 
place the catheter below the stone; however, drainage was 
frequently interrupted by fragment obstruction.

In the present study, pre-stenting was not routinely 
performed unless acute obstructive renal insufficiency or 
pyenephrosis was suspected. Among the 59 non-stented 
patients, 29 were planned for catheter drainage; however, 
2 eventually received conventional treatment because of 
failed ureteroscopy with concomitant catheter drainage. 
The overall success rate of our drainage procedure at the 
first attempt was 93.1% (27/29), similar to the reported 
success rate of initial ureteroscopy (88.5%) [18]. Addi-
tionally, our data revealed a similar PULS between the 
groups. Overall, we believe that it is unnecessary to rou-
tinely pre-stent.

The use of ureter catheters in ureteroscopic lithotripsy 
was first reported by Wu ZH [19]. In their study, a modi-
fied 5 F ureter catheter with a laser fibre inside was used 
for lithotropsy. Yi X [20] developed a new stone occlusion 
device using a 5 F ureter catheter with its end split into 
4 strips. In both studies, negative pressure was applied 
to facilitate drainage. Zhu X [16] employed a method 
similar to that of Wu ZH but without negative pressure 
and measured the temperature changes during irrigation 
when laser firing stopped in a model; however, the tem-
perature changes during laser firing were not assessed. 
In fact, the peak temperature of the drainage group was 
over 56 °C (2.0 J×10 Hz and 1.5 J×20 Hz, 15 ml/min, laser 
firing times of 5 s and 10 s), which could cause thermal 
injuries in 1 s [5].

A common point of the above three studies was that 
the catheter was inserted through the working channel of 
the ureteroscope to the ureter. The 8/9.8 F ureteroscope 
allows the 5  F device to pass through, leaving very lim-
ited space for irrigation. When a 200-µm laser fibre or a 
steel wire is placed in the catheter, approximately 20% of 
its lumen is occupied. These factors inevitably interfere 
with irrigation and drainage flow. We overcame these 
shortcomings by placing the catheter outside the ure-
teroscope. Our study showed satisfying results in terms 
of temperature reduction, with a Tpeak of 39.95 °C in the 
drainage group vs. 54.42  °C in the conventional group. 
Moreover, endoscopic visualization was significantly 
better in the drainage group than in the drainage group 

Table 1 Comparisons of variables between drainage group and 
conventional group

Drainage 
Group 
(N = 32)

Conventional 
Group (N = 35)

P

Demographic & clinical 
features
Gender 1.000
   Male 18 20
   Female 14 15
Age 52.56 ± 12.09 53.00 ± 12.85 0.887
BMI 26.14 ± 3.49 25.34 ± 3.20 0.333
Stone Side 0.628
   Left 17 16
   Right 15 19
Stone Location 1.000
   Abdominal part 17 19
   Pelvic part 15 16
Maximum Stone Diameter 
(cm)

1.40 ± 0.39 1.57 ± 0.50 0.146

Pre-stenting 5 3 0.464
Intra-operative Data
CEM43 (min) 0.00044 (0.22) 76.49 (3646.25) < 0.001
lgCEM43 -3.20 ± 2.72 2.02 ± 2.95 < 0.001
Tpeak (°C) 39.34 ± 5.88 54.28 ± 9.11 < 0.001
QoEV 3.50 (0.88) 1.50 (0.50) < 0.001
tmax (s) 11.50 (4.00) 3.00 (2.00) < 0.001
Operation Time (min) 7.15 ± 3.47 14.93 ± 7.66 < 0.001
PULS 0.594
   Grade 0 21 26
   Grade 1 11 9
   Grade 2+ 0 0
Follow-up
SFR 90.63% 

(29/32)
85.71% (30/35) 0.711

Ureter Stricture 0 0 /
BMI, body mass index. CEM43, cumulative equivalent minutes at 43 °C. Tpeak, the 
peak temperature of Irrigation fluid. tmax, maximum continuous lasing time. 
QoEV, quality of endoscopic vision. PULS, post-ureteroscopic lesion scale. SFR, 
stone-free rate
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because of sufficient drainage and irrigation (Supplemen-
tary Video 1).

Unlike in vitro studies, irrigation is difficult to stabilize 
at a certain flow rate in clinical practice. To maintain a 
clear endoscopic view or to reduce stone migration dur-
ing lithotripsy, water valves are frequently adjusted to 
control irrigation and drainage. Therefore, we aimed to 
enrol patients whose surgeries were performed by the 
same endourology team. In this context, identical peri-
staltic pump settings and similar surgeon preferences 
during lithotripsy might help minimize bias.

He Z [21] measured the IRP via a drainage method 
similar to that used by Zhu X in an artificial model, and 
the data revealed that the IRP was significantly lower 
and that no intrarenal hypertension was observed in the 
drainage group. Unfortunately, since percutaneous renal 
puncture is needed to deliver a pressure-measuring cath-
eter into the renal pelvis, which might cause additional 
injuries to patients, IRP changes were not monitored in 
our study.

The cumulative equivalent minutes (CEMs) were estab-
lished by Sapareto and Dewey [8] to assess the thermal 
dose at different thermal exposures; they reported that 

a “break” temperature of 43  °C was arbitrarily chosen 
as the best estimate from all available data. Although 
CEM43 = 120 min is widely used as a threshold of tissue 
damage, it is important to note that the thermal response 
differs between tissues and species. For example, ani-
mal experiments have shown that CEM43 > 80 min leads 
to significant bladder damage, whereas CEM43 > 70  min 
causes significant kidney damage [22]. Unfortunately, 
the threshold thermal dose for the human ureter is not 
well defined in the published literature. In our study, 
several patients whose CEM43 exceeded 120  min were 
included; however, no stricture was found. Future stud-
ies are needed to further determine the specific thermal 
dose for the ureter and urothelial tissues to increase our 
understanding of thermal damage thresholds in laser 
lithotripsy.

Some limitations exist in the present study. First, 
although favourable conclusions were drawn, the study 
population was small. Large-scale prospective clini-
cal trials are needed to further validate the efficacy and 
safety of this drainage strategy. Second, we evaluated 
the temperature changes at only one laser power and 
irrigation pressure setting. More settings are needed in 

Fig. 4 Comparisons of intra- and postoperative parameters between groups A CEM43 was significantly shorter in the drainage group. B lgCEM43 was sig-
nificantly lower in the drainage group. C The peak temperature of irrigation during lithotripsy was significantly lower in the drainage group. D The clarity 
of ureteroscopic vision during lithotripsy was significantly better in the drainage group. E The longest lasing time was significantly longer in the drainage 
group. F The operation time was significantly shorter in the drainage group ***, P < 0.001 CEM43, cumulative equivalent minutes at 43 °C. Tpeak, the peak 
temperature of Irrigation. tmax, maximum continuous lasing time. QoEV, quality of endoscopic vision. PULS, post-ureteroscopic lesion scale
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future studies to explore safe power and irrigation pres-
sure ranges under the current drainage strategy. Third, 
we used only the ureteral stricture as a surrogate marker 
for thermal damage, but no such complications occurred; 
therefore, long-term follow-up, as well as other ther-
mal injury markers, such as inflammatory cytokines and 
fibrosis-related markers, are needed to further address 
this issue. Fourth, we did not use safety guide in conven-
tional group due to economic reason and surgeon’s per-
sonal habit, although it might provide some benefits for 
drainage to both the bladder and the upper urinary sys-
tem. We would assess the thermal control effects of safety 
guide in future studies.

Conclusions
Concomitant catheter drainage could significantly reduce 
the irrigation temperature and improve endoscopic 
vision during ureteroscopic laser lithotripsy. Moreover, 
the procedure caused no additional injury to the ure-
ter. This thermal control strategy is safe and feasible and 
would be beneficial not only during laser lithotripsy but 
also during other ureteroscopic procedures.
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