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Abstract
Background To evaluate accuracy of MRI-based radiomics in diagnosing prostate cancer (PCa) in patients with PSA 
levels between 4 and 10 ng/mL and compare it with the latest Prostate Imaging Reporting and Data System (PI-RADS 
v2.1) score.

Methods 221 patients with prostate lesions and PSA levels in 4–10 ng/mL, including 154 and 67 cases in the training 
and validation groups. Pathological confirmation of all patients was accomplished by the use of MRI-TRUS fusion 
targeted biopsy or systematic transrectal ultrasound (TRUS) guided biopsy. 851 radiomic features were extracted 
from each lesion of ADC and T2WI images. The least absolute shrinkage and selection operator (LASSO) regression 
algorithm and logistic regression were employed to select features and build the ADC and T2WI model. The 
combined model was obtained based on the ADC and T2WI features. The clinical benefit and diagnostic accuracy of 
the three radiomics models and PI-RADS v2.1 score were evaluated.

Results 10 radiomic features were ultimately selected from the ADC images, 13 from the T2WI images and 7 from 
the combined models. The ADC, T2WI and combined models achieved satisfactory diagnostic accuracy in the training 
[AUC:0.945 (ADC), 0.939 (T2WI), 0.979 (combined)] and validation groups [AUC: 0.942 (ADC), 0.943 (T2WI), 0.959 
(combined)], which was significantly higher than those in PI-RADS v2.1 model (0.825 for training cohort and 0.853 
for validation cohort). Compared with the PI-RADS v2.1 score, the three radiomics models generated superior PCa 
diagnostic performance in both the training (p = 0.002, p = 0.005, p < 0.001) and validation groups (p = 0.045, p = 0.035, 
p = 0.015).

Conclusion Radiomics based on ADC and T2WI images can better identify PCa in patients with PSA 4–10 ng/mL, and 
MRI-based radiomics significantly outperforms the PI-RADS v2.1 score.

Clinical trial number Not applicable.
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Introduction
Prostate cancer (PCa) is a common and significant malig-
nancy of the genitourinary system that primarily affects 
older males [1]. Although serum prostate specific anti-
gen (PSA) is widely employed as a biomarker for prostate 
cancer (PCa) screening, there is significant ambiguity 
regarding PSA levels ranging from 4 to 10 ng/mL, usu-
ally referred to as the “gray zone”. Less than 25% of men 
with a prostate-specific antigen (PSA) level in the gray 
zone were found to have prostate cancer (PCa), and 
nearly 70% of men with gray-zone PSA levels underwent 
biopsy, yielding no significant cancer [2, 3]. Enhanc-
ing diagnostic precision and minimizing unwarranted 
biopsy procedures would be both suitable and valuable 
for patients exhibiting prostate-specific antigen (PSA) 
values ranging from 4 to 10 ng/mL. Magnetic resonance 
imaging (MRI) is a non-invasive imaging tool that has 
had beneficial impacts on pre-operative diagnosis, clini-
cal staging, therapy evaluation, and post-operative moni-
toring for prostate cancer (PCa). The use of the Prostate 
Imaging and Data System version 2.1 (PI-RADS v2.1) 
score, which is based on a multiparametric MRI (mp-
MRI) protocol including T2-weighted imaging (T2WI), 
diffusion-weighted imaging (DWI), and dynamic con-
trast-enhanced imaging (DCEI), has enhanced the overall 
accuracy for detecting prostate cancer (PCa). However, 
this scoring system has shown vulnerability to variations 
in observer experience, leading to inadequate agreement 
and reproducibility among different observers [4–6].

Recently, radiomics has been able to efficiently extract 
a significant number of imaging features from medical 
images, allowing for the conversion of these images into 
quantitative data that can be analyzed objectively. This 
data can provide insights into the underlying pathophysi-
ological characteristics, particularly tumor heterogeneity 
[7–9]. By conducting quantitative analysis of these char-
acteristics, it is possible to develop radiomics-based mod-
els that are associated with clinical and biological traits. 
These models can improve the accuracy of tumor diag-
nosis, identification of molecular subtypes, evaluation of 
treatment effectiveness, and prediction of survival. Con-
sequently, they can provide valuable information for clin-
ical decision-making. Several studies have indicated that 
the radiomics model has a beneficial impact on the diag-
nosis and assessment of aggressiveness in PCa [10–14]. 
However, previous research has not extensively examined 
the diagnostic value comparison between an objective 
radiomics-based technique and the subjective PI-RADS 
v2.1 score in prostate patients with prostate-specific anti-
gen (PSA) levels in the gray zone [15, 16].

So, the purpose of this study was to investigate the 
impact of radiomic-based models for PCa diagnosis in 
the PSA level range of 4–10 ng/mL and to evaluate the 

diagnostic performance by comparing it with the PI-
RADS v2.1 score.

Materials and methods
Study population
This retrospective study, conducted at a single center, 
received approval from our institutional review board 
(ethics approval number: JD-HG-2024-075) and was 
exempt from the necessity for informed consent. It was 
consisted of 740 consecutive patients who received pros-
tate mp-MRI examination and were subsequently con-
firmed by pathology results. The data was collected from 
January 2021 to December 2022. Before undergoing 
prostate MRI imaging, all patients included in the study 
had elevated levels of total PSA (t-PSA) ranging from 4 to 
10 ng/mL. Additionally, their levels of free PSA (f-PSA) 
were also assessed. However, a total of 519 patients 
were excluded based on the following criteria: (1) total 
PSA levels less than 4 ng/mL or greater than 10 ng/mL 
(n = 485); (2) lesions with Pathology-MRI mismatch 
(pathological biopsy of lesions cannot be seen on MRI) 
(n = 10); (3) too small lesion volume (maximum diameter 
less than 5 mm) or lesion boundary cannot be delineated 
(n = 6); (4) biopsy or other therapies performed before 
MRI examination (n = 6); (5) unsatisfactory MR image 
quality or inconsistent MRI protocol (n = 5); (6) incom-
plete clinical information (n = 7). Finally, the study popu-
lation consisted of 221 patients including 60 PCa patients 
and 161 non-cancerous patients without any histological 
evidence of cancer. In these 60 patients with PCa, 16 had 
lesions in the transition zone (TZ) and the remaining 44 
had lesions in the peripheral zone (PZ). These enrolled 
patients were randomly assigned to the training cohort 
(n = 154) and validation cohort (n = 67) at a ratio of 7:3. 
The flowchart with exclusion criteria is shown in Fig. 1.

MRI protocol and PI-RADS v2.1 assessment
The prostate mp-MRI examination was conducted using 
a 3.0 Tesla MRI scanner (Philips Ingenia, The Nether-
lands) equipped with a 32-channel body phased array 
coil. The scan sequences and acquisition settings, as per 
the PI-RADS v2.1 protocol, are presented in Table  1. 
The sequences mostly consisted of T2-weighted imaging 
(T2WI), diffusion-weighted imaging (DWI), and dynamic 
contrast-enhanced imaging (DCEI). An axial diffusion-
weighted imaging (DWI) series was performed with sev-
eral b values (b = 0, 100, 1000, 2000  s/mm2) to generate 
apparent diffusion coefficient (ADC) maps. These maps 
were automatically reconstructed for the purpose of 
visual assessment and analysis.

Two radiologists, Z.Y. and W.C., with 7 and 10 years of 
expertise in prostate MRI diagnosis, independently exam-
ined each prostate mp-MRI image. They were unaware 
of the pathological results and clinical information. The 
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two radiologists reached a consensus, resolving any dis-
agreement. A third senior radiologist specializing in the 
genitourinary system (S.J.) was consulted to resolve any 
ongoing disagreements in the PI-RADS v2.1 score and 

make a final conclusion. According to PI-RADS v2.1 cri-
teria [4], T2WI sequence plays a dominant role in the 
evaluation of transitional zone (TZ) lesions, while DWI 
performs only as a secondary role. The PI-RADS assess-
ment category in peripheral zone (PZ) primarily depends 
on the DWI sequence, while DCEI sequence exerts 
minor effects.

Pathological analysis
All of the recipients had a 10-core systematic transrec-
tal ultrasonography (TRUS)-guided biopsy following 
an MRI scan. Furthermore, MRI-TRUS fusion targeted 
biopsy was employed to examine worrisome PCa lesions 
identified on MRI with a PI-RADS v2.1 score of 3 or 
higher. For these lesions, an additional 2–3 targeted cores 
would be included. The procedure of MRI-TRUS fusion 
targeted biopsy was carried out utilizing the Mylab Twice 
Color Doppler ultrasound device, which is equipped with 

Table 1 Prostate multi-parametric MRI acquisition protocol
Parameters T2WI 

axial
T2WI 
sagittal

DWI DCEI

TR (ms) 3000 4765 6000 3.2
TE (ms) 100 100 77 1.5
FOV (mm) 220 × 220 240 × 180 260 × 260 220 × 220
Slice thickness 
(mm)

3 4 3 3

Slice gap (mm) 0 1 0 0
Matrix 276 × 238 240 × 161 104 × 126 124 × 121
b values (s/mm2) - - 0,100,1000,2000 -
Note: TR, repetition time; TE, echo time; FOV, field of view; T2WI, T2-weighted 
imaging; DWI, diffusion-weighted imaging; DCEI, dynamic contrast-enhanced 
imaging

Fig. 1 Flowchart of the study population with exclusion criteria
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the Real-time Virtual Sonography (RVS) imaging fusion 
system manufactured by Esaote SpA in Genova, Italy. 
The prostate biopsy technique was conducted by highly 
experienced senior urologists with more than 5 years of 
expertise. Experienced pathologists in our institution 
evaluated the specimens using the 2014 International 
Society of Urological Pathology (ISUP) Gleason grading 
system [17].

Region of interest segmentation
Due to the limited role of DCEI, we only investigated 
T2WI and ADC pictures for our study. The process of 
segmenting the region of interest (ROI) involved manu-
ally delineating each slice on both T2WI and ADC pic-
tures. This task was performed by two radiologists (Z.R. 
and C.T.) using a double-blind procedure, meaning 
they were not provided with any clinical information or 
pathology data. The radiomics features were extracted 
using the open-source 3D Slicer software (version 
5.0.3), which has been validated in previous studies for 
radiomics research. The detailed approach is illustrated 
in Fig. 2. The two radiologists meticulously delineate the 
boundaries of all regions of interest (ROIs) according to 
identical criteria.

To account for tumor heterogeneity, it is crucial to 
include regions of bleeding, calcification, necrosis, and 
cystic tissue in the specified ROIs. However, it is impor-
tant to exclude normal anatomical features such as the 
urethra, ejaculatory duct, and seminal vesicles. Of the 
221 patients enrolled, there were 60 PCa patients in this 
study, of whom had 50 patients with one PCa lesion, 9 
patients with two PCa lesions and only 1 patient with 
three PCa lesions. For each patient, only the dominant 
lesion was ultimately selected for the delineation of ROI 
in our study. For PCa lesions, the dominant lesion was 
determined as the lesion with the highest Gleason score 
(GS) as validated by pathological findings. If the GSs were 

the same, the dominant lesion was chosen as the one with 
the largest lesion volume. For non-cancerous lesions, we 
only delineated the dominant lesion with the largest vol-
ume [18]. Finally, we identified a total of 221 ROIs, con-
sisting of 60 for PCa and 161 for non-cancerous tissue.

Radiomics feature extraction
The radiomics features were extracted from the regions 
of interest (ROIs) on the T2WI and ADC images using 
the 3D Slicer software, which is an open-source resource. 
All radiomics features were in accordance with the stan-
dards set by the Image Biomarker Standardization Ini-
tiative (IBSI). Before outlining the region of interest, we 
performed image registration and pre-processing of the 
MRI images. This included pre-processing the image 
with resampling normalisation and image intensity inho-
mogeneity (bias) correction, which was performed in the 
3D-slicer software. The extraction of features from each 
MR image were performed based on the “Pyradiomics” 
package (version 3.9.1) of 3D-slicer. Then, a total of 851 
features were extracted from ADC and T2WI pictures, 
consisting of 14 shape characteristics, 18 first-order fea-
tures, 75 original texture features, and 744 wavelet fea-
tures. To ensure the consistency of ROIs outlined by the 
two radiologists and to maintain the stability and repro-
ducibility of the features, a total of 30 lesions from the 
entire dataset were randomly chosen for secondary out-
lining. The texture features extracted from these lesions 
were then tested for reliability. Features with an inter-
observer correlation coefficient (ICC) greater than 0.75 
were considered reliable and reproducible. These features 
were subsequently used for feature selection and model 
construction.

Radiomics feature selection and model construction
Prior to selection, all features were standardized 
using the Z-score approach, which enhances the 

Fig. 2 Flowchart of our study
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stability of the data by subtracting the mean and dividing 
by the standard deviation. Following the reliability test, 
the radiomics characteristics of the training group under-
went LASSO regression for additional data selection. The 
LASSO regression approach utilizes a continually applied 
penalty term λ value to perform a continuous penal-
ized screening of all variables. This procedure ensures 
that all characteristic variables continuously converge to 
zero. The characteristics were chosen using the ten-fold 
cross-validation procedure based on the least binomial 
deviance. The final selection of non-zero features was 
made using the multivariate logistic regression method 
to construct a classification and diagnostic model. In this 
study, we have initially developed two separate models 
based on the selected characteristics as the ADC model 
and the T2WI model (features were derived from ADC 
and T2WI images, respectively). In order to demonstrate 
the predictive efficacy of the radiomics model in cat-
egorizing and diagnosing PCa, we created a combined 
model by combining ADC with T2WI characteristics, 
the screening process is the same as for ADC with T2WI. 
The selection of texture features, creation of models, and 
evaluation of diagnostic efficacy for the radiomics mod-
els were conducted using R software (version 4.1.1) and 
Python software (version 3.9.1).

Radiomics-based models comparison
The diagnostic effectiveness of all models was assessed 
based on the area under the curve (AUC) of the receiver 
operating characteristic (ROC). The models’ overall accu-
racy was determined using confusion matrices, as well 
as sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) for each model. 
The Delong test was employed to examine the diagnos-
tic effectiveness of the models, with a significance level 
of P < 0.05 indicating statistical significance. The calibra-
tion curve and Brier score were employed to assess the 
calibration performance and accuracy of the classifica-
tion prediction model. A lower Brier score indicates a 
more optimal model fit and a closer approximation to 
the ideal model, resulting in improved predictive perfor-
mance. Furthermore, decision curve analysis (DCA) was 
employed to assess the clinical efficacy of the categorical 
prediction model.

Statistical analysis
The statistical analyses were conducted using R soft-
ware version 4.1.1, SPSS version 22.0, and MedCalc 
version 15.2.2. The normality of the distribution was 
assessed using either the Kolmogorov-Smirnov test or 
the Shapiro-Wilk test. The analysis involved continuous 
variables that followed a normal distribution. An inde-
pendent samples t-test was used to compare the means, 
which were reported as the mean ± standard deviation. 

Non-parametric tests were used to analyze categorical 
variables (frequencies and percentages) or continuous 
variables with a non-normal distribution, represented as 
median (lower quartile, upper quartile). The reliability 
of two radiologists with differing levels of expertise was 
assessed using the inter-observer correlation coefficient 
(ICC). The ICC value, which runs from 0 to 1, is consid-
ered to have good reliability when it is more than 0.75 
[19]. The inter-observer agreement for the PI-RADS v2.1 
score was evaluated by the Kappa coefficients. The Kappa 
value ranges from 0 to 1, and was rated 0–0.20 as slight, 
0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as 
substantial, and 0.81–1 as almost perfect agreement. The 
diagnostic performance of the radiomics-based model 
and PI-RADS v2.1 score was assessed by comparing the 
area under the curve (AUC). The diagnostic sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) were calculated using the optimal 
cutoff value, along with their corresponding 95% confi-
dence intervals (CI). A two-tailed p value below 0.05 sig-
nifies statistical significance.

Results
Patient characteristics
Baseline characteristics of 154 patients (41 patients with 
PCa and 113 patients with non-cancerous lesions) in the 
training cohort and 67 patients (19 PCa patients and 48 
non-cancerous patients) in the validation cohort enrolled 
in this study were shown in Table 2. In the training group, 
among the 41 patients with PCa, 11 (26.8%) had low-risk 
PCa (ISUP grade group 1) and 30 (73.2%) had clinically-
significant PCa (ISUP grade group ≥ 2). Patients’ clinical 
information, including age, t-PSA, f-PSA, and free/total-
PSA ratio (f/t-PSA) levels were also collected. Age was 
significantly higher in patients with PCa than patients 
with non-cancerous lesions, while f/t-PSA level was sig-
nificantly lower in PCa patients in the training cohort 
(p < 0.05). There was no significant difference among all 
parameters in the validation cohort (all P > 0.05).

Radiomics models building and validation
After the consistency test and excluding features with 
ICC coefficients less than 0.75, 735 and 698 features were 
extracted from the T2WI images and the ADC images, 
respectively. Then, based on the LASSO regression algo-
rithm, 13 features were finally extracted from the T2WI 
images. After the same procedure, 10 and 7 features 
were finally extracted from the ADC images and com-
bined model. All extracted features and their coefficients 
were detailed in Supplementary Table 1, the process was 
illustrated in detail in Fig. 3. The correlation heatmap of 
the final screening features of the ADC, T2WI and com-
bined models were illustrated in detail in Supplementary 
Fig.  1. The radiomics model developed using the final 
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extracted features of T2WI images produced an AUC of 
0.939 (95% CI: 0.888–0.971) in the training cohort. Simi-
larly, the radiomics model based on ADC images showed 
a comparable diagnostic performance with an AUC of 
0.945 (95% CI: 0.897–0.975). Furthermore, the combined 
model demonstrated a significantly enhanced diagnostic 
performance compared to the T2WI and ADC models. 
The AUC was 0.979 (95% CI: 0.943–0.996). The Delong 
test results indicated no statistically significant difference 
between the three models (p = 0.827 between ADC model 
and T2WI model, p = 0.069 between ADC and Combined 
model, p = 0.054 between T2WI and combined model). 
The ADC model, T2WI model, and combined model in 
the validation cohort had comparable diagnostic per-
formance to the models in the training group, with area 
under the curve (AUC) values of 0.942 (95% confidence 
interval [CI]: 0.856–0.984), 0.943 (95% CI: 0.858–0.985), 
and 0.959 (95% CI: 0.881–0.992), respectively. The 
Delong test indicated that there was no statistically sig-
nificant difference seen among the three models. The 
p-values were 0.969 between the ADC model and T2WI 
model, 0.253 between the ADC model and combination 
model, and 0.359 between the T2WI model and com-
bined model (Tables  3 and 4). The categorization diag-
nostic performance of all these models was reported 
and demonstrated. Furthermore, Fig. 4 depicts the ROC 
curves for all the classification models.

Diagnostic performance between the ADC model, T2WI 
model, combined model and the PI-RADS v2.1 score
The inter-observer agreement for the PI-RADS v2.1 score 
was measured with the Kappa value of 0.865 (95%CI: 
0.745–0.935). This indicates that the results obtained 
using the PI-RADS v2.1 score were very trustworthy 
and reproducible. The AUC values of the PI-RADS v2.1 

score in the training group and validation group were 
0.825 (95% confidence interval: 0.756–0.881) and 0.853 
(95% confidence interval: 0.745–0.928), respectively. The 
optimal threshold of the PI-RADS v2.1 score for distin-
guishing between PCa and non-cancerous lesions was 
determined to be 4. The diagnostic accuracy in the train-
ing cohort was found to be 0.857. In the training cohort, 
the ADC model, T2WI model, and combined model 
demonstrated superior diagnosis accuracy with val-
ues of 0.896, 0.877, and 0.935, respectively. Comparable 
outcomes were achieved in the validation group. More 
details about the diagnostic performance of all these 
models was shown in Table  3. Furthermore, the ADC 
model, T2WI model and combined model showed sta-
tistically significant differences compared with PI-RADS 
v2.1 score both the training (p = 0.002, p = 0.005 and 
p < 0.001, respectively) and validation cohort (p = 0.046, 
p = 0.035 and p = 0.015, respectively), as shown in Table 4.

Clinical use and calibration
The calibration curve demonstrated that the three cat-
egorization diagnostic models closely resembled the ideal 
curve, suggesting that these models exhibited strong fit-
ting and predictive capabilities. The Brier score of the 
combined model was lower compared to the ADC and 
T2WI models, indicating a higher level of fitness. The 
Brier scores for the combined model, ADC model, and 
T2WI model were 0.049, 0.059, and 0.091, respectively. 
Figure  5 provided a comprehensive depiction of the 
calibration curve. The ADC model, T2WI model, and 
combination model demonstrated significant clinical 
advantages and outperformed the PI-RADS v2.1 score in 
terms of clinical performance gains. Figure  6 displayed 
the decision curve analysis. Radiomics and PI-RADS 

Table 2 Patients’ baseline information
Training cohort (n = 154) Validation cohort (n = 67)
PCa
(N = 41)

Non-cancerous lesions (N = 113) P PCa
(N = 19)

Non-cancerous lesions (N = 48) P

Age (year) 72 ± 7 69 ± 8 0.031* 71 (67, 76) 69 (65, 74) 0.242
t-PSA (ng/mL) 6.59 (6.18, 8.54) 6.58 (5.42, 8.22) 0.086 6.71 ± 1.29 6.24 (4.96, 8.06) 0.666
f-PSA (ng/mL) 0.83 (0.54, 1.04) 1.12 (0.89, 1.49) 0.125 1.19 ± 0.53 1.19 (0.91, 1.65) 0.444
f/t-PSA 0.13 (0.10, 0.20) 0.17 (0.14, 0.23) 0.006* 0.18 ± 0.08 0.20 ± 0.08 0.265
Location (%) < 0.001* < 0.001*
TZ 14 (34.1%) 99 (87.6%) 6 (31.6%) 43 (89.6%)
PZ 27 (65.9%) 14 (12.4%) 13 (68.4%) 5 (10.4%)
ISUP, n (%)
grade group 1 11 (26.8%) N.A. N.A. 6 (31.6%) N.A. N.A.
grade group 2 9 (22.0%) N.A. N.A. 2 (10.5%) N.A. N.A.
grade group 3 10 (24.4%) N.A. N.A. 7 (36.8%) N.A. N.A.
grade group 4 9 (22.0%) N.A. N.A. 3 (15.8%) N.A. N.A.
grade group 5 2 (4.8%) N.A. N.A. 1 (5.3%) N.A. N.A.
Note: PCa, prostate cancer; PSA, prostate specific antigen; t-PSA, total PSA; f-PSA, free PSA; f/t-PSA, free/total-PSA ratio; TZ, Transitional zone; PZ, Peripheral zone; 
ISUP, International Society of Urological Pathology. N.A., not applicable. * Statistically significant
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v2.1 score in the diagnosis of prostate cancer patients are 
demonstrated in Supplementary Figs. 2 and 3.

Discussion
In this study, we successfully constructed and internally 
validated radiomics models based on ADC and T2WI 
images. Compared to the PI-RADS v2.1 score, radiomics 
models could significantly improve the diagnostic accu-
racy of PCa in patients with PSA 4-10ng/mL. This 

non-invasive method has the potential to play a crucial 
role in the diagnosis of PCa in patients with PSA levels of 
4–10 ng/mL.

As a marker for PCa, serum PSA has been widely 
used in early diagnosis of PCa. PSA has high sensitivity 
but low specificity, which makes it elevated not only in 
PCa but in non-cancerous lesions (such as benign pros-
tate hyperplasia and prostatitis), especially at the range 
of 4–10 ng/mL. The low specificity of PSA inevitably 

Fig. 3 (A-F) Demonstrated the specific process of least absolute shrinkage and selection operator (LASSO) regression analysis screening features for 
ADC, T2WI and combined models, respectively. (A, C, E) Showed process of features selection. The vertical line was plotted at the optimal γ of 0.054, 0.042 
and 0.050 for ADC, T2WI and combined models, respectively. Ten, thirteen and seven features with non-zero coefficients were finally selected for ADC, 
T2WI and combined models, respectively. (B, D, F) Showed that features selection performed by 10-fold cross-validation with the criterion of minimum 
deviance
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leads to the possibility for overdiagnosis and unneces-
sary prostate biopsy. Therefore, there is an urgent need to 
better improve diagnostic accuracy of PCa patients with 
PSA levels between 4 and 10 ng/mL. PI-RADS category 
based on multi-parametric MRI protocol has shown 
great advantage in PCa diagnosis [20]. The first version 
was published in 2012, updated as the second version 
(PI-RADS v2) in 2015 and slightly revised to the latest 
version (PI-RADS v2.1) in 2019 [4, 21]. Compared to PI-
RADS v2, it showed improved inter-observer agreement 
and diagnostic performance for PCa and clinically-sig-
nificant PCa in PI-RADS v2.1, especially for transitional 
zone lesions. However, it was still not satisfactory for the 
diagnosis of PCa in patients with PSA ranges in 4–10 ng/

Table 3 Diagnostic performance of the PI-RADS v2.1, ADC, T2WI and the combined model
AUC (95%CI) SEN SPE ACC PPV NPV

PI-RADS v2.1
Training cohort 0.825(0.756–0.881) 0.756 0.894 0.857 0.756 0.894
Validation cohort 0.853(0.745–0.928) 0.789 0.917 0.806 0.737 0.833
ADC
Training cohort 0.945(0.897–0.975) 0.976 0.876 0.896 0.902 0.894
Validation cohort 0.942(0.856–0.984) 1.000 0.792 0.867 0.737 0.896
T2WI
Training cohort 0.939(0.888–0.971) 0.878 0.851 0.877 0.756 0.919
Validation cohort 0.943(0.858–0.985) 1.000 0.833 0.881 0.789 0.917
Combined
Training cohort 0.979(0.943–0.996) 0.976 0.929 0.935 0.902 0.947
Validation cohort 0.959(0.881–0.992) 1.000 0.833 0.911 0.842 0.938
Note: AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; ADC, apparent 
diffusion coefficient; T2WI, T2-weighted imaging; Combined, the combination between T2WI and ADC

Table 4 P values for pairwise comparison of ROC curves
Combined PI-RADS v2.1 ADC

Training cohort
PI-RADS v2.1 < 0.001*
ADC 0.069 0.002*
T2WI 0.054 0.005* 0.827

Validation cohort
PI-RADS v2.1 0.015*
ADC 0.253 0.046*
T2WI 0.359 0.035* 0.969

Note: ADC, apparent diffusion coefficient; T2WI, T2-weighted imaging; 
Combined, the combination between T2WI and ADC; An asterisk (*) indicates a 
significant (p < 0.05) difference

Fig. 4 Comparison of the diagnostic performance of different models. (A, B) Show the ROC curves for each model in detail while also recording the 
value of AUC
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mL using the PI-RADS v2.1 score. In our study, we iden-
tified a cutoff value of > 3 for mpMRI-based PI-RADS 
v2.1 score and found an AUC of 0.882 in detecting PCa 
with a specificity of 88.5% in the training cohort, which 
had better performance than that of PI-RADS v2 in 
detecting PCa (AUC = 0.708, Specificity 58.3%) reported 
by Qi et al. [22]. Similar results were reported by Han 
et al. [23]. They also found that the diagnostic AUC of 
mpMRI-based PI-RADS v2.1 score was 0.867 in detect-
ing csPCa with a PSA level range of 4–10 ng/mL with 
80.2% specificity. However, the diagnostic sensitivity of 
PI-RADS v2.1 in detecting PCa patients with PSA levels 
of 4–10 ng/mL was only 70.7% and 79.0% in the training 
and validation cohort. The low sensitivity made it dif-
ficult to accurately diagnose prostate lesions in patients 
with PSA 4–10 ng/mL. In addition, subjective PI-RADS 

score was closely associated with different observers’ 
experience [6, 24]. Observers with insufficient experience 
identified incorrect PI-RADS score, and further affected 
clinical decision-making, resulting in overdiagnosis, 
overtreatment and unnecessary biopsy. To reduce unnec-
essary biopsies, Dwivedi et al. developed a prebiopsy 
mpMRI-based risk score to predict the likelihood of PCa 
in patients with PSA 4–10 ng/mL [25].

Compared to PI-RADS score, radiomics enables medi-
cal images to be used as data for objective and in-depth 
analysis. It provides valuable diagnostic, prognostic and 
predictive information and has been used in PCa diag-
nosis and evaluation. In most published studies, they 
compared radiomics-based models to PI-RADS v2 score 
in the assessment of PCa and csPCa. Chen et al. [14]. 
revealed the superiority of radiomics to the PI-RADS v2 

Fig. 5 The comparison of the calibration curve and Brier score across various models. All three models exhibited calibration curves that closely approxi-
mated perfect curves. In comparison to the ADC and T2WI models, the Combined model exhibited superior goodness of fit, as seen by the lesser Brier 
values (0.049, 0.059, and 0.091, respectively). The chart presented below illustrates the distribution of diagnostic probability across several models
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in PCa and csPCa diagnosis which was similar to that 
reported by Wang et al. [26]. They also concluded that 
machine learning-based MR radiomics contributed to 
improve the diagnostic value of PI-RADS v2 in PCa and 
csPCa. For diagnostic gray zone with PSA levels of 4–10 
ng/mL, Qi et al. [22]. reported that the radiomics-based 
model performed better on both the training and valida-
tion cohorts compared to PI-RADS v2 score. Little prior 
studies focused on direct comparison between radiomic-
based models and PI-RADS v2.1 score in PSA gray zone. 
Similar studies were only reported by Zhang et al. [15]. 
and Lu et al. [16]. They both established a combined 
model incorporating radiomic features and clinical data 
for the detection of PCa more accurately. Our purpose 
and methods differed from these two studies. In our 
study, head-to-head comparison between the radiomic-
based model and PI-RADS v2.1 was only considered. 
Secondly, all lesions were pathologically evaluated only 
by systematic transrectal ultrasound (TRUS)-guided 
prostate biopsy in their studies. However, TRUS alone 
is unreliable for PCa detection and MRI-TRUS fusion 
biopsy can be suitable for enhancing PCa diagnosis [27]. 
In our study, MRI-TRUS fusion targeted biopsy was used 
for suspicious PCa lesions on MRI and more targeted 

cores would be added for these lesions, which made it 
more accurate and reliable.

Some studies have applied radiomic features for PCa 
screening in patients with PSA 4–10 ng/mL. Zhong et al. 
concluded that MRI-based radiomics outperformed PI-
RADS v2.1 for noninvasive prediction of PCa in patients 
with PSA levels of 4–10 ng/mL and could help improve 
the diagnostic performance for junior radiologists with 
less experience [28]. More importantly, the relationship 
between radiomic features and underlying biological 
information needs to be discussed. In our study, first-
order features (mean, 10 percentile, entropy, kurtosis 
and skewness) differed significantly between cancerous 
and benign tissue on T2WI or ADC images. High values 
of entropy (randomness) and skewness (asymmetry) for 
ADC images, as well as high values of mean and kurto-
sis for T2WI images in cancerous lesions may reflect an 
increased probability of PCa due to irregular arrange-
ment in PCa cellularity and absence of normal prostate 
glands. In addition, high value of entropy was related 
to the heterogeneity of PCa and may be useful to assess 
tumor aggressiveness [11]. In radiomics, second-order 
texture features, such as, gray level co-occurrence matrix 
(GLCM), gray level dependence matrix (GLDM), neigh-
boring gray tone difference matrix (NGTDM) and gray 

Fig. 6 Clinical benefits of these models were evaluated and compared, which indicated that the ADC, T2WI and combined models had better net clinical 
benefit than the PI-RADS v2.1 model
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level size zone matrix (GLSZM) can provide a measure of 
intertumoral heterogeneity [9]. In our study, all four tex-
ture features exhibited a significant difference between 
benign and cancerous lesions. High values of depen-
dence nonuniformity normalized (DNN) and strength, as 
well as low values of large dependence emphasis (LDE) 
and small area emphasis (SAE) on T2WI or ADC image 
reflected the heterogeneity of PCa, representing hetero-
geneous signal intensity in cancerous lesion, which was 
similar to that reported by Qi et al. [22]. They also pro-
posed that high value of entropy and low value of LDE 
were associated with PCa heterogeneity. In addition, 
studies have demonstrated that higher intra-tumoral het-
erogeneity is closely related to a worse prognosis [29]. 
We further verified the diagnostic performance of the PI-
RADS v2.1, ADC, T2WI and combined models for PCa. 
Radiomic-based models (ADC, T2WI and combined) 
exhibited a better performance to PI-RADS v2.1 and 
the combined model was optimal with the highest AUC, 
which was similar to previous results [15, 16, 22].

Limitations
There are several limitations to our study. First, this is a 
retrospective study performed in a single center with rel-
atively small study population. A larger sample size from 
multi-centers will be recruited to validate our results in 
further studies. Second, ROIs were manually segmented, 
rather than semi-automatic or automatic delineation, 
which was time-consuming and may affect the repeat-
ability of the segmentation. Third, transitional zone and 
peripheral zone lesions were not separately analyzed due 
to the limited number of patients in this study. In the 
future, we will increase the study population and evaluate 
the performance of radiomic-based model in each zone. 
Fourth, we only extracted partial data from this group as 
internal validation to test the model. An external valida-
tion cohort should be included to validate the robustness 
of our model in future.

Conclusions
In conclusion, we developed and internally validated 
radiomics models based on ADC and T2WI images for 
discriminating suspicious PCa patients with PSA 4–10 
ng/mL in this study. Each radiomics model achieved sat-
isfactory diagnostic performance, which was significantly 
better than the PI-RADS v2.1 score. This indicated the 
positive value and superiority of MRI-based radiomics in 
differentiating suspicious PCa in patients with PSA 4–10 
ng/mL beyond routine evaluation.
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